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(Received 20 March 1972) 

Abstract-New theoretical treatments of the growth of a fast moving spherical second phase as governed by 
simultaneous heat- and mass-transfer limitations are demonstrated. The new method demonstrates that 
the solution to these complex coupled cases can be related to the available uncoupled cases. Thus, the heat 
or mass transfer limited case is shown to be asymptotic cases of the simultaneous heat and mass transfer 

limited cases. 

NOMENCLATURE 

function defined in equation (18); 
function defined in equation (19); 
=c (T, 
less! ; 

- T,,,)/L( TJ [dimension- 

-(cs,,CTJ - cJ/(c, - cs,,(T,J 
[dimensionless] ; 
mass fraction of solute [dimension- 
less] ; 
specific heat of the first phase 
[cal/g”K] ; 
effective Fick diffusion coefficient for 
solute transport in the first phase 
[cm”/s]; 
material time derivative defined in 
the text; 
function defined in equation (37b); 
function defined in equation (17); 
function defined in equations (37) 
and (38); 
latent heat of phase transition (< 0 for 
endothermic; >O for exothermic), 

bl/gl ; 
= D/a, Lewis number [dimension- 
less] ; 

= (PlP,)*q 
= (P/P,). iicDK, - TJWJI 
[dimensionless] ; 

= W,)*B; 
= (P/P,) * k,,tt TJ - cJ/k.j - cJT,)l 
[dimensionless] ; 
dummy integration variable; 
instantaneous radius of the growing 
second phase sphere [cm]; 
E dRJdt [cm/s]; 
initial radius of the growing second 
phase sphere [cm] ; 
radial coordinate reckoned from 
center of second phase. sphere [cm] ; 
dummy integration variaqe; 
time (reckoned from the commence- 
ment of growth procas) [sj ; 
temperature [OK]; 
sphere surface temperature PK] ; 
translational velocity ofC the center of 
second phase sphere relative to the 
surrounding fluid at infinity [cm/s] ; 
radially spherically symmetric con- 
vective velocity field induced by mass 
transfer process itself [cm/s]; 
radial velocity component field in- 
duced by the translatory motion of 
the second phase sphere [cm/s] ; 
tangential velocity component field 
induced by the translatory motion of 
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the second phase sphere [cm/s] ; 

Y> distance from the interface [cm]. 

Greek symbols 

a, = L/(&J thermal diffusivity of the 
first phase [cm”/s] ; 

PY density of the first phase [g/cm3]; 

:: 
density of the second phase [g/cm3]; 
effective thermal conductivity of the 
first phase [cal/sm”K] ; 

0, angle [rad] ; 

-L dummy integration variable; 

5, dummy integration variable; 

?@)l function defined in equation (38) or 

(44). 

Subscripts 

d, pertaining to the second phase; 

h, pertaining to the heat-transfer process; 

4 pertaining to the mass- transfer 
process; 

sat, saturated (pertaining to equilibrium 
at the phase interphase); 

; 
at the interface, I = R(t); 
evaluated at t = 0; 

cc, far from the spherical second phase 
center. 

Superscripts 
pertaining to two component second 
phase. 

EXACT treatment of a stationary spherical 
second phase growth as governed by simul- 
taneous heat and mass transfer limitations has 
been recently demonstrated [l]. The second 
phase can be a bubble (gas), a droplet (liquid), 
or a particle (solid). However, quite frequently 
in many fields of applied science, the second 
phase is always moving, i.e. there exists a 
translatory motion of the center of the second 
phase relative to the surrounding first phase. 
The growth law for a moving second phase with 
very small density ratio p,/p in the heat or mass 
transfer limited cases has been otained recently 

by Ruckenstein and Davis [2, 31. The valid 
boundary layer approximation has been used 
by them. Also the growth law for a moving 
second phase with very large density ratio peep 
in the heat or mass transfer limited cases has 
been obtained by Ruckenstein [4] and Chao [5]. 
They used combined stationary interface and 
boundary layer approximations. However, as 
pointed out in Cl], in general, heat and mass 
transfer limitations occur at the same time, and 
the temperature of the growing second phase is 
not known a priori. Thus, one should view the 
heat or mass transfer limited cases as asymptotic 
extremes of the simultaneous heat and mass 
transfer limited cases, as will be demonstrated 
in the Appendices. As a first guess, of course, 
one would expect that somehow the parameters 
characterizing the velocity flow field of the first 
phase should appear in the compatibility condi- 
tion from which the a priori unknown second 
phase temperature is calculated. Yet, it turns 
out to be the reverse, i.e. the velocity flow field 
of the first phase, or the fact that the second 
phase is moving, does not come into play at all 
in the boundary layer approximation (for small 
density ratio p,/p) and in the combined station- 
ary interface and boundary layer approximations 
(for large density ratio pd/p) as far as calculating 
the a priori unknown second phase temperature 
concerned, as will be demonstrated later. In this 
work, only the high Reynolds number flow (or 
potential flow) case will be demonstrate. The 
low Reynolds number flow (or Stokes flow) case 
will be treated elsewhere [6]. 

STATEMENT OF THE PROBLEM 

The problem under consideration is as follows: 
A spherical second phase of size, R,, is produced 
in an environment, i.e. the first phase, at time 
t = 0. The second phase can be a bubble (gas), 
a droplet (liquid), or a particle (solid). At time 
t = 0, the entire second phase is assumed to have 
attained a certain proper equilibrium tempera- 
ture TW, i.e. the wet-bulb tem~rature, and 
remain at this temperature throughout the 
growth process. That is, one assumes that 
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throughout the entire transient growth process 
a constant T,,, exists, corresponding to a constant 
c&T,) which must be found as part of the 
problem solution (see Discussion). At times 
t > O? the second phase starts to grow due to 
both heat and mass transfer driving forces and 
move in the first phase. The center of the second 
phase is assumed to move at a velocity U, 
relative to stationary coordinates and the flow 
field around the second phase is assumed to be 
approximated by the potential flow. 

The second phase is characterized by the 
following parameters: initial radius, R,, density, 
pd, latent heat of phase transition, L(T,,,) (~0 for 
endothermic; >O for exothermic), and saturation 
concentration c,.JT,); the first phase is charac- 
terized by the following parameters: density, p, 
specific heat, cP, effective thermoconductivity, 
L, and effective Fick’s diffusion coefficient, D. 
The first phase is initially at a uniform tem- 
perature T, and concentration c, (> c,,~), while 
the second phase is assumed to have uniform 
constant temperature T, and concentration cd 
throughout the growth process. During the 
growth process, i.e. t > 0, the system is described 
by the following equations, 

DT 
- = crV=T, 
Dt 

E = DV2c 
Dt ’ 

R(t) < r 6 00 (la) 

R(t) < r < 00 (lb) 

with 
D 

Dt - at 
- 2 + (urt + l&J; + F$ 

V2=$g r2L 
( > 

i a a 
f------ 

r2 sin 8 a0 ( > 
sine- 

a0 

v ‘9 
=$. 

( > 
l-pd .A 

P 

v ?f C-u cn* 
( > 

1-F .cose 

V& = Urn’ 
( > 

1 +$ *sin8 

T(r, 8,O) = Tm 

c(r, 8,O) = c, 

T(oo, 8, t) = T, 

C(W, 8, t) = C, 

T(W), 0, t) = T,,, 

c(W)> e, t) = &(T,,,) 

(W 

(34 

W-4 

(44 

W-9 

I 1 
““R=-L(T,) ‘$. sin 6 de (5a) 

pdk = m .A. n ac 

cd - csa,(L) 2 s( ) 
0 

’ r=R(t) 

sin e de 

R(0) = R, (6) 

where CI 3 A/&,) is the thermal diffusivity of 
the first phase. The problem is to find the a priori 
unknown temperature T,,, and obtain the growth 
law of the second phase, R(t). 

METHOD OF SOLUTION 

The key to this physically important problem 
is to recognize that the growth laws obtained 
from either heat or mass transfer viewpoints 
must be identical. Thus, one obtains the com- 
patibility condition from which T, is calculated 
(see below). The exact solution of this very 
complicated problem is still yet to be found. 
However, for certain asymptotic extremes, 
various kinds of valid approximations are 
available. 

(i) Boundary layer approximation for the small 
density ratio p,/p case 

With the small density ratio 

1 9 PdIP (7) 

and the thin boundary-layer assumptions, i.e. 

a=T 2aT 
-b-- 
ar2 r ar 

a% 2 ac 

ar2v-r 

@a) 

(8’4 

a2T i a . aT - ~- 
ar2 ’ r2 sin 8 ae ( > 

smtldB (84 



814 W. S. CHANG 

From the heat transfer viewpoint, i.e. equations 
(8d) (9a), (lOa), (lla), (12a), (13a) and (14), the 

and 

the governing equations (l)-(6) 
into the following form [2, 31, 

temperature variable T(y, 8, t) satisfies the same 
boundary value problem as in [2] and [3]. 

1, (ge) 
Thus, one gets 

are simplified (15) 

where 
aT -- 
at 

y 
Nai 3 kl.4 s _. P cp(Tm - T,, 

x sinBE = ma2T 

pd pd UT,,,) 

ae ay2 
Pa) 

and G,(t) is defined by G(t) 

f x 
sin 8 de dr 

1 - (tan2 e/2) exp (3 1 A(s) ds) 
f 

z 
64(C). 

1 + (tan2 e/2) exp (3 5 A(s) ds) r 
00 0 r 

with 

ac 

at- 
y 

x%sin~E=~!? 
R. ae ay2 

T(y, ‘J, 0) = T, 

45 8, 0) = cm 

T(co, 8, t) = T, 

c(~, e, t) = C, 

T(O,e, t) = T,,, 

c(O, e, t) = csa,(TJ 

A 1 p,k = _._. 
-L(TJ 2 

sin e de 

(9b) 

A(t) = A,,(t) = “m$;)) (18) 
h 

and 
. 

d In R(t) 
B(t) = BJt) = 7. 

(16) 

(17) 

(19) 

(loa) From the mass transfer viewpoint, i.e. equations 
(lob) (9% (lob), (11% (12b), (13b) and (14), the 

(‘la) 
concentration variable c(y, 8, t) satisfies the 
same boundary value problem as in [2] and [3]. 

(1 lb) Thus, one gets 

(124 

W) 

Nag D 
R,(t) = R, - y. 

J( > 
- .G,,,(t) 
7L 

where 

(134 P P cs,,(T,J - cm Nag E -.p E _. 

m 
pd 

m 
pd ‘d - csa,(Tw) 

and G,(t) is given by G(t) (equation (17)) 

P$ = 

R(0) = R,. 

sin ode (13b) with 

(14) 
A(t) = A,(t) = U,(Rm(t)) 

R,(t) 

(20) 

(21) 

(22) 
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and 
d In R,(t) 

B(t) = B,(t) = dt . (23) 

The uniqueness of the growth law of the second 
phase, i.e. Rh(t) = R,(t) E R(t), gives the follow- 
ing compatbility condition : 

N&h = N&,/D (24) 

or 
q.Ja = BB,,/D. (25) 

The value of T, (hence c,,,(T,), Q and Bz) must 
be properly chosen so that the compatibility 
condition equation (25) is satisfied. 

Then, the required growth law is given by 

R(t) = R, - F. J( > E *G(t) (264 
x 

WW 

where G(t) is given by equation (17) with 

and 
d In R(t) 

B(t) = --&-. 

(27) 

(28) 

The remarkable result is that, indeed, the para- 
meters characterizing the flow field in the first 
phase does not appear in the compatibility 
condition equation (25) at all. In other words, 
the fact that the second phase is moving fast, 
does not come into play at all as far as calculat- 
ing the a priori unknown second phase tem- 
perature T,,, concerned. The compatibility condi- 
tion equation (25) is completely identical to the 
compatibility condition when the second phase 
is stationary (cf. equation (A36) in [l]). Another 
remarkable result is the fact that the second 
phase initial size, R,, does not appear in the 
compatibility condition equation (25) within 
the validity of the approximations. Few phys- 
ically important asymptotic cases are considered 
in the Appendix A. 

(ii) Combined stationary interface and boundary 
layer approximations for the large density 
ratio p,/p case 

With the stationary interface approximation, 
i.e. treating R(t) as a constant while solving the 
diffusion equations, and the boundary layer 
approximation, i.e. 

a2T 9 ;aT - - 
ar2 r ar 

. a*c ~ 2& 

ar2 r dr 

a2T i a c__- 

(294 

(2W 

(29d) 

and 

the governing equations (l)-(6) are simplified 
into the following form [4, 51, 

aT u aT 3um 
- - y.3.$.c0s e.% + ZR 
at 

x sin&g = 
a2T 

“p 
ac -- 
at 

y .3.!!f.cos 0.E + +!f.g 
aY 

T(Y, to) = T, 

C(Y, 4 0) = c, 

T(oo, 8, t) = T, 

c(~, 8, t) = C, 

T(0, 8, t) = T, 

~(0, 0, t) = cJT,J 

;1 1 
piiR = y@-J’z’ 

= aT 

$( > -G y=o 
. sin 8 de 

(304 

(30’4 

(314 

@lb) 

(324 

(32’4 

(334 

W) 

W) 
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P$ = DP 1 .-. 
Cd - &VW) 2 

.sin 8 d0 (34b) 

R(0) = R,. (35) 

From the heat-transfer viewpoint, i.e. equations 
(30a), (31a), (32a), (33a), (34a) and (35), the 
temperature variable T(y, 13, t) satisfies the same 
boundary value problem as in [4] and [5]. Thus, 
one gets 

R#) = R, - (36) 

where H,,(t) is given by H(t) 

H(t) s 
t JCYWI s ___ 

?I 

0 

sin3 6 de dz 

with 
(374 

l- 
1 - case 

f (4 0) = 
1 + cose.cxp [---rW.tl 

W) - 
1+ 

1 case 
1 + cos e .cxp [-r(t) 4 

and DISCUSSTON 

(38) 

From the mass-transfer viewpoint, i.e. equations 
(30b), (31b), (32b), (33b), (34b) and (35), the 
concentration variable c(y, 8, t) satisfies the same 
boundary value problem as in [4] and [S].Thus, 
one gets 

R,(t) = R, - 
20 

J( > 
- . Na; . H,(t) (39) 7t 

where H,,,(t) is given by H(t) (equation (37)) with 

r(t) = y,(t) = 3. %#L@N 
R,W * 

(40) 

The uniqueness of the growth law of the second 

phase, i.e. R,,(t) = R,(t) G R(t), gives the com- 
patibility condition as follows: 

Najl. Ja = NaL.JD (41) 
or 

B;+ = B;. JD. (42) 

The value of T, (hence c,,,(T,), Bf and B$,) must 
be properly chosen so that the compatibility 
condition equation (42) is satisfied. Then, the 
required growth law is given by 

R(t) = R, - 
J( ) 

; . Naff. H(t) (43a) 

= R, - . Na9,. H(t) (43b) 

where H(t) is given by equation (37) with 

u (R(Q) y(t) = 3. --, 
WI 

Again, both the parameters characterizing the 
flow field in the first phase and the initial second 
phase sphere radius do not appear in the com- 
patibility condition equation (42). In fact, 
equations (25) and (42) are identical. Few 
physically important asymptotic cases are con- 
sidered in the Appendix B. 

It is assumed that all the physical and trans- 
port properties of the second and first phases 
are constant and there exists a local equilibrium 
relationship c&T,) at I = R(t) throughout the 
growth process. The compatibility condition 
equation (25) (for small density ratio (p,/p) or 
equation (42) (for large density ratio pJp) is a 
necessary and sufficient condition for the exist- 
ence of the stated constant interface condition 
solution, i.e. it guarantees the uniqueness of the 
growth law, R(t). Thus, the basic assumption of 
strictly constant T, (and, thus, constant c&T,)) 
is automatically justified a posteriori for second 
phase growth problems of the type considered 
here. Physically, the necessary and sufficient 
compatibility condition means that the second 
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phase can grow if one maintains T(co, t) = T, 
and c( co, t) = cm throughout the growth process. 

CONCLUSIONS 

Two valid approximate treatments of the 
growth of a fast moving spherical second phase 
in the presence of simultaneous heat and mass- 
transfer limitations have been demonstrated. 
In general, a trial-and-error method must first 
be used to solve the compatibility condition, 
equation (25) or (42). Having thus determined 
Tw, the growth law is then readily obtained. 
Formally, we have demonstrated in the Append- 
ices that heat- or mass-transfer limited cases can 
correspond to two different asymptotic cases of 
simultaneous heat- and mass-transfer limited 
cases. These results should be useful in several 
physical sciences. 
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APPENDIX A 

Within the validity of the baundary layer 
approximation, two asymptotic cases according 
to the Lewis number Le = D/or are considered 
as follows: 
(a) ie % 1, (A.1) 

the compatibility condition equation (25) gives 
I&( < 1. 

Then, equation (21) gives 

(A.2) 

cSa,(TJ = cm. (A.3) 

This determines T, and then the required 
growth law is obtained from equations (15)-(19). 
This is the growth law for the second phase in 
the heat transfer limited case with small density 
ratio pd/p. Formalk, this result is equivalent to 
the case when cd z cm (and, thus,~,,~(T,,,) z c,) 

PI. 
(b) Le -% 1, (A.4) 

the compatibility condition equation (25) gives 

Iqj % 1. (A.5) 

Then, equation (16) gives 

T w M Tm. (A4 

Then, the required growth law is obtained from 
equations (20)-(23). This is the growth law for 
the second phase in the mass transfer limited 
case with small density ratio pd/p. Formally, 
this result is equivalent to the case when 
L(TJ z 0 (and, thus, T, z TJ [2]. 

APPENDIX B 

Within the validity of the combined stationary 
interface and boundary layer approximations, 
two asymptotic cases according to the Lewis 
number Le E D/a are considered as follows: 

(a) Le B 1, (B.1) 

the compatibility condition equation (42) gives 

I-B;\ G 1. 

Then, equation (21) gives 

(B.2) 

cs,,(T,) = cm. (B.3) 

This determines T, and then the required 
growth law is obtained from equations (36)-(38). 
This is the growth law for the second phase in 
the heat transfer limited case with large density 
ratio p,/p. Formally, this result is equivalent to 
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the case when c,, cz c, (and, thus, c,,,(T,) = c,) T, z T,. 03.6) 
[4,5]. Then, the required growth law is obtained from 
(b) Le < 1, (B.4) equations (39) and (40). This is the growth law 

the compatibility condition equation (42) gives 
for the second phase in the ma& transfer 
limited case with small density ratio pip. 

IBfI e 1. (B.5) Formally, this result is equivalent to the c&e .., 

Then, equation (21) gives 
when L(TJ z 0 (and, thus, T, x TJ [4,5]. 

LO1 DE CROISSAN E DUNE PHASE SECONDAIRE SPHERIQUE EN DEPLACEMENT 
RAPIDE CONDITI s NNEE PAR UN TRANSFERT SIMULTANE DE CHALEUR ET DE 

MASSE 

RCumLOn a consider6 un traitement thtorique nouveau de ia croissance dune phase secondaire 
sphbique en depiacement rapide gouvernh par un transfert simuitane de chaieur et de masse. La nouveiie 
methode demontre que ia solution de ces cas compiexes coupits pcut etre reii6e aux cas utiiisabies non 
coupits. Ainsi, on montre que ies cas hmites du transfer? de chaieur ou de masse sont ies cas asymptotiqucs 

des cas limites du transfert simuitane de chaieur et de masse. 

WACHSTUMSGESETZ EINER SCHNELL BEWEGTEN, KUGELFdRMIGEN ZWEITEN 
PHASE AUFGRUND DER EINSCHRjiNKUNGEN DURCH GLEICHZEITIGE WARME- 

UND STOFFUBERTRAGUNG 

Znaammenf~Es wird eine neue Behandiung angegeben fiir das Wachs~msgese~ einer schnell 
bewegten, kugelfiirmigen zweiten Phase aufgrund der Einschtinkungen durch gleichzeitige W&me- und 
Stoffiibertragung. 

Die neue Methode zeigt, dass die Liisung dieses komplex gekoppelten Falles auf verfiigbare nicht 
gekoppelte F&he bezogen werden kann. Reine W&me- oder Stoffiibertragung erweisen sich damit als 

asymptotische Fiille der Vorgange bei gleichzeitiger Warme- und Stofftibertragung. 


